Robust Sliding Mode Control of Electromagnetic Suspension System with Parameter Uncertainty

نویسنده

  • Abbas Shiri
چکیده

Due to the nonlinearities inherent in electromagnetic suspension systems, it is difficult to design a linear controller which gives satisfactory performance and stability over a wide range of operating points. Besides, uncertainties in modeling of the system make it difficult to control the system robustly. The parameter uncertainties such as mass and electric resistance variations of the system and external disturbances affect the performance of the system. In this study a sliding mode controller is designed which is robust to bounded mass and electric resistance changes and reject the external disturbances. Besides the robustness of the mentioned controller, its simplicity makes it interesting to apply to Electromagnetic Suspension System. The system and controller are simulated in Matlab/simulink environment. The results of the simulations confirm the satisfactory performance and robustness of the designed controller against uncertainties and disturbances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Back-Stepping Sliding Mode Controller for Uncertain Chaotic Colpitts Oscillator with no Chattering

By introducing Colpitts oscillator as a chaotic system, this paper deals with back-stepping control method and investigates the restrictions and problems of the controller where non-existence of a suitable response in the presence of uncertainty is the most important problem to note. In this paper, the back-stepping sliding mode method is introduced as a robust method for controlling nonlinear ...

متن کامل

Adaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems

Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012